

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Heterocyclic Hydroxamic Acids. VI. Microdetermination of Cerium(IV) with *N*-*p*-Chlorophenyl-2-furohydroxamic Acid

Shahid Abbas Abbasi^a

^a WATER QUALITY AND ENVIRONMENT DIVISION, CENTRE FOR WATER RESOURCES DEVELOPMENT AND MANAGEMENT, CALICUT, INDIA

To cite this Article Abbasi, Shahid Abbas(1980) 'Heterocyclic Hydroxamic Acids. VI. Microdetermination of Cerium(IV) with *N*-*p*-Chlorophenyl-2-furohydroxamic Acid', Separation Science and Technology, 15: 10, 1789 – 1791

To link to this Article: DOI: 10.1080/01496398008055622

URL: <http://dx.doi.org/10.1080/01496398008055622>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

Heterocyclic Hydroxamic Acids. VI. Microdetermination of Cerium(IV) with *N*-*p*-Chlorophenyl-2-furohydroxamic Acid

SHAHID ABBAS ABBASI

WATER QUALITY AND ENVIRONMENT DIVISION
CENTRE FOR WATER RESOURCES DEVELOPMENT AND MANAGEMENT
KUNNAMANGALAM P.O., CALICUT 673571, INDIA

Abstract

N-*p*-Chlorophenyl-2-furohydroxamic acid is presented as the most sensitive and selective of the hydroxamic acids reported so far for the separation-spectrophotometric determination of cerium(IV). Cerium was determined in lanthanum oxide.

INTRODUCTION

During an ongoing program (1-4) of studies on the physicochemical properties and analytical applications of heterocyclic hydroxamic acids, *N*-*p*-chlorophenyl-2-furohydroxamic acid was found to be the most sensitive and selective of the hydroxamic acids reported so far (5-8) for the separation-colorimetric determination of Ce(IV). The results of the investigations are presented.

EXPERIMENTAL

CHFA was prepared following the general method of Tandon and Bhattacharyya (9). All other chemicals were of reagent grade. Conductivity water was used throughout. The metal ion solutions were standardized with the help of appropriate methods (10). The pH adjustments were carried out with a Radiometer pH meter PHM-29. Spectra were recorded on a Perkin-Elmer 402 spectrophotometer, and measurements at a constant wavelength were done with a SF-4 (USSR) spectrophotometer.

Procedure for Separation and Determination

The pH of a cerium solution containing 4–40 μg of Ce(IV) was adjusted between 7.8–10, and 5 mL of reagent solution (0.5% w/v) in ethanol was added with stirring. The resulting precipitate was equilibrated with 5 mL of chloroform for 2 min and the chloroform extract was separated. The extraction was repeated with a fresh 5 mL of chloroform, and the mother liquor was washed with two 2 mL portions of chloroform to recover any trapped droplets of the extract. The extracts and washings were combined, diluted to 25 mL, and the absorbance was measured at 460 nm against the reagent solution as the blank. A calibration curve was set up accordingly.

RESULTS AND DISCUSSION

The chloroform extract has λ_{Max} at 460 nm ($\varepsilon = 6.0 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1}$). Beer's law is obeyed in the range of 2–20 ppm of Ce(IV). The sensitivity of the method, as per Sandell's definition, (11), is 0.02 ppm. The method tolerates Au(III), Zn(II), and Hg(II) when present in 20-fold the amount of Ce(IV). Mg(II), Li(I), K(I), and Na(I) are tolerated when present in 30-fold the amount of Ce(IV). Halides, nitrate, sulfate, acetate, and carbonate are tolerated in a 100-fold excess. Tartrate, oxalate, and citrate, which tend to reduce Ce(IV) to Ce(III), interfere but their interference can be checked by oxidizing them with nitric acid prior to precipitation of Ce(IV).

The interference from V(V), Ti(IV), Fe(III), Cu(II), Ni(II), Co(II), and U(VI) can be eliminated by prior extraction of these ions by 0.1 M solutions of CFHA in chloroform from solutions maintained at 4–8 M HCl [for Ti(IV) and V(V)]; pH = 0.1 [for Fe(III)]; pH = 4.2 for [Cu(II)]; pH = 5.0 [for U(VI)]; and pH = 5.5 [for Ni(II) and Co(II)].

Determination of Cerium in Lanthanum Oxide

Lanthanum oxide, 100 mg, containing 0.5% cerium dioxide was dissolved in 1 N sulfuric acid (25 mL). A 25% w/v ammonium chloride solution (5 mL) was added, followed by the reagent solution (2 mL). The contents were diluted to 50 mL and, after adjusting the pH to 4.5 ± 0.5 , were transferred to a 100 mL separatory funnel. The contents were twice equilibrated with 10 mL portions of chloroform. The organic phase was discarded. The pH of the aqueous phase was raised to ~ 9 , and CFHA (0.75 g) dissolved in ethanol (5 mL) was added. Cerium was then determined as detailed above.

REFERENCES

1. S. A. Abbasi, *J. Electroanal. Chem.*, **68**, 371 (1976).
2. S. A. Abbasi, R. S. Singh, and M. C. Chattopadhyaya, *Rocz. Chem.*, **51**, 1821 (1977).
3. S. A. Abbasi, *Anal. Lett.*, **9**, 113 (1976).
4. S. A. Abbasi, *Thermochim. Acta*, **29**, 134 (1979).
5. A. K. Majumder, *N-Benzoylphenylhydroxylamine and Its Analogues*, Pergamon, Oxford, 1971.
6. P. Murugaiyan and M. S. Das, *Anal. Chim. Acta*, **48**, 155 (1969).
7. Y. K. Agrawal, *Chem. Anal. (Warsaw)*, **22**, 215 (1977).
8. B. S. Chandravanshi and V. K. Gupta, *Indian J. Chem.*, **16A**, 590 (1978).
9. S. G. Tandon and S. C. Bhattacharyya, *Anal. Chem.*, **33**, 1267 (1971).
10. M. C. Rand, A. E. Greenberg, and M. J. Taras (eds.), *Standard Methods for the Examination of Water and Wastewater*, 14th ed., American Public Health Association, Washington, D.C., 1978.
11. E. B. Sandell, *Colorimetric Determination of Traces of Metals*, 3rd ed., Interscience, New York, 1959.

Received by editor April 8, 1980